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Abstract
In this comment, we point out numerous errors in the paper of Alhaidari cited
in the title.

PACS numbers: 03.65.Pm, 03.65.Ge

In a recent paper, Alhaidari [1] treats the problem of formulating a relativistic Dirac-type
equation which can be reduced to solving a Schrödinger equation for shape invariant potentials
for the upper component while the lower component is given in terms of the upper component.
The method used is the same as that used in his earlier paper [2].

The proposed Hamiltonian is (we use the notation of Bjorken and Drell [3])

H = α · (p − iβr̂W(r)) + βM + V (r) (1)

where r̂ = r
r
. The vector (V (r), r̂W(r)) is interpreted as an external electromagnetic field.

Due to the matrix β accompanying W in the Hamiltonian, the interpretation of the vector
(V , r̂W) as an electromagnetic potential is not necessary and in fact plays no role in his
calculations. The resulting radial equation[

−iρ2
d

dr
+ ρ1

(
W +

κ

r

)
− E + V + Mρ3

]
� = 0 (2)

where � =
(

G�j (r)

F�j (r)

)
corresponds to Alhaidari’s equation (1) where the quantum numbers �

and j are omitted.
The subsequent application of a unitary transformation and the imposition of the constraint

(in our notation)

W(r) = 1

S
V (r) − κ

r
(3)
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with both V and W nonzero and S a constant can only be satisfied for a chosen value of κ .
Otherwise we will have different functions W for different values of κ . This cannot be since
the functions V (r) and W(r) appear in the Hamiltonian. Forgetting this, Alhaidari writes
results for the Dirac–Rosen–Morse and Dirac–Eckart potentials which cannot be correct since
the energy levels obtained would be degenerate in l, j,m. In the nonrelativistic Schrödinger
equation, the radial equation does contain the centrifugal barrier contribution for nonzero
values of �.

Even if one interprets the results as corresponding to � = 0 so that κ = −1, the unitary
transformation is inexplicable since it does not reduce to the identity in the nonrelativistic
limit.

The subsequent calculations are for the case V = 0 treated by Castanõs et al [4] earlier.
The results need to be corrected since � = 0 means κ = −1 and not κ = 0 as stated by
Alhaidari. This has the effect of replacing W by W − 1

r
. In fact, in this restricted case one

can find suitable values of W for the Morse, Rosen–Morse and Eckart problems, without the
need of any unitary transformation.
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